Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629194

RESUMO

The flower bud differentiation plays a crucial role in cherry yield and quality. In a preliminary study, we revealed the promotion of spermidine (Spd) in bud differentiation and quality. However, the molecular mechanism underlying Spd regulating cherry bud differentiation remains unclear. To address this research gap, we cloned CpSPDS2, a gene that encodes Spd synthase and is highly expressed in whole flowers and pistils of the Chinese cherry (cv. 'Manaohong'). Furthermore, an overexpression vector with this gene was constructed to transform tobacco plants. The findings demonstrated that transgenic lines exhibited higher Spd content, an earlier flowering time by 6 d, and more lateral buds and flowers than wild-type lines. Additionally, yeast one-hybrid assays and two-luciferase experiments confirmed that the R2R3-MYB transcription factor (CpMYB44) directly binds to and activates the CpSPDS2 promoter transcription. It is indicated that CpMYB44 promotes Spd accumulation via regulating CpSPDS2 expression, thus accelerating the flower growth. This research provides a basis for resolving the molecular mechanism of CpSPDS2 involved in cherry bud differentiation.


Assuntos
Prunus , Espermidina , Espermidina/metabolismo , Tabaco/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus/genética , Flores/fisiologia
2.
Int J Biol Macromol ; 263(Pt 2): 130346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403208

RESUMO

The DOF (DNA binding with one finger) has multiple functions in plants. However, it has received little attention in the research field of cherries. In this study, the evolutionary relationship and molecular characterization of DOF in four cherry species were analyzed, revealing its expression pattern in sweet cherry. There are 23 members in Prunus avium cv. 'Tieton', 88 in Prunus cerasus, 53 in Cerasus × yedoensis, and 27 in Cerasus serrulata. Most of these genes are intron-less or non-intron, with a conserved C2-C2 domain. Due to heterozygosity and chromosomal ploidy, whole-genome duplication (WGD) events occur to varying degrees, and DOF genes are contracted during evolution. Furthermore, these genes are affected by purifying selection pressure. Under low-temperature treatment, the expression of PavDOF2 and PavDOF18 were significantly up-regulated, while that of PavDOF16 is significantly down-regulated. The expression of PavDOF9, PavDOF12, PavDOF14, PavDOF16, PavDOF17, PavDOF18, and PavDOF19 exhibits an increasing trend during flower development and varies during sweet cherry fruit development. PavDOF1, PavDOF8, PavDOF9, and PavDOF15 are localized in the nucleus but is not transcriptionally active. The findings systemically demonstrate the molecular characteristics of DOF in different cherry varieties, providing a basis for further research on the functions of these genes.


Assuntos
Prunus avium , Prunus , Prunus avium/genética , Frutas/metabolismo , Prunus/genética
3.
Gene ; 904: 148164, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38224923

RESUMO

C2H2-type zinc finger proteins are one of the most widely studied families in plants and play important roles in abiotic stress responses. In the present study, the physicochemical properties, chromosomal locations, evolutionary relationships, and gene structures of 54 C2H2 zinc finger protein (ZFP) family members were analyzed in apple. The MdC2H2-ZFP genes were phylogenetically clustered into seven subfamilies distributed in different densities on 16 chromosomes. The RNA-seq data from various tissues revealed that MdC2H2-ZFPs differentially expressed among root, stem, leaf, flower, and fruits. Quantitative analysis of its expression characteristics showed that the MdC2H2-ZFP genes were rapidly induced as exposure to abiotic stresses such as drought, salt and low temperature etc. Under drought stress, the expression of eight members was significantly up-regulated, and the highest was obtained from MdC2H2-17; as exposure to salt stress, nine MdC2H2-ZFPs was obviously up-regulated, with the highest expression of MdC2H2-13; and under low temperature stress, the expression of seven members was highly up-regulated, and MdC2H2-13 also demonstrated the highest expression which is same as the case under salt stress. Therefore, some members of MdC2H2-ZFP gene family considerably involve in the multiple abiotic stress responses, which may better understand the function of this family and facilitate the breeding of apple for stress tolerance.


Assuntos
Dedos de Zinco CYS2-HIS2 , Malus , Dedos de Zinco CYS2-HIS2/genética , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética , Filogenia , Dedos de Zinco/genética
4.
Plant Cell Rep ; 43(1): 7, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133822

RESUMO

KEY MESSAGE: Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.


Assuntos
Arabidopsis , Prunus avium , Resposta ao Choque Frio/genética , Prunus avium/genética , Prunus avium/metabolismo , Antioxidantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
5.
BMC Plant Biol ; 23(1): 652, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110865

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) gene family is one of plants' largest transcription factor families. It plays an important role in regulating plant growth and abiotic stress response. RESULTS: In this study, we determined that the PavbHLH28 gene participated in cold resistance. The PavbHLH28 gene was located in the nucleus and could be induced by low temperature. Under the treatment of ABA, PEG, and GA3, the transcript level of PavbHLH28 was affected. At low temperature, overexpression of the PavbHLH28 gene enhanced the cold resistance of plants with higher proline content, lower electrolyte leakage (EL) and malondialdehyde (MDA) content. Compared with the WT plants, the transgenic plants accumulated fewer reactive oxygen species (ROS), and the activity and expression levels of antioxidant enzymes were significantly increased. The expression of proline synthesis enzyme genes was up-regulated, and the transcripts levels of degradation genes were significantly down-regulated. The transcripts abundance of the cold stressed-related genes in the C-repeat binding factor (CBF) pathway was not significantly different between WT plants and transgenic plants after cold stress. Moreover, the PavbHLH28 could directly bind to the POD2 gene promoter and promote its gene expression. CONCLUSIONS: Overall, PavbHLH28 enhanced the cold resistance of transgenic plants through a CBF-independent pathway, which may be partly related to ROS scavenging.


Assuntos
Arabidopsis , Prunus avium , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Prunus avium/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Methods ; 19(1): 135, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012623

RESUMO

BACKGROUND: Calcium oxalate (CaOx) is the most prevalent and widespread biomineral in plants and is involved in protective and/or defensive functions against abiotic stress factors. It is, however, expected that this function has an extremely significant contribution to growth processes in plants bearing large amounts of CaOx, such as cacti growing in desert environment. RESULTS: In our research, small-sized CaOx crystals (≤ 20 µm) with tetrahedral or spherical shapes were observed to dominate in each epidermal and cortical cell from the tubercles of Mammillaria schumannii, a species from the Cereoideae subfamily, having tubercles (main photosynthetic organs) united with adjacent ones almost into ridges on its stem. Because they have potential significant functions, differential centrifugations after mechanical blending were used to obtain these small-sized CaOx crystals, which extremely tend to adhere to tissue or suspend in solution. And then the combined Scanning Electron Microscope Energy Dispersive System (SEM-EDS) and Raman spectroscopy were further performed to demonstrate that the extracted crystals were mainly CaC2O4·2H2O. Interestingly, spherical druses had 2 obvious abnormal Raman spectroscopy peaks of -CH and -OH at 2947 and 3290 cm-1, respectively, which may be attributed to the occluded organic matrix. The organic matrix was further extracted from spherical crystals, which could be polysaccharide, flavone, or lipid compounds on the basis of Raman spectroscopy bands at 2650, 2720, 2770, and 2958 cm-1. CONCLUSIONS: Here we used a highlightedly improved method to effectively isolate small-sized CaOx crystals dominating in the epidermal and cortical cells from tubercles of Mammillaria schumannii, which extremely tended to adhere plant tissues or suspend in isolation solution. And then we further clarified the organic matrix getting involved in the formation of CaOx crystals. This improved method for isolating and characterizing biomineral crystals can be helpful to understand how CaOx crystals in cacti function against harsh environments such as strong light, high and cold temperature, and aridity.

7.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762116

RESUMO

Masson pine (Pinus massoniana Lamb.) is an important resin-producing conifer species in China. Resin yield is a highly heritable trait and varies greatly among different genotypes. However, the mechanisms regulating the resin yield of masson pine remain largely unknown. In this study, physiological, proteomic, and gene expression analysis was performed on xylem tissues of masson pine with high and low resin yield. Physiological investigation showed that the activity of terpene synthase, as well as the contents of soluble sugar, jasmonic acid (JA), methyl jasmonate (MeJA), gibberellins (GA1, GA4, GA9, GA19, and GA20), indole-3-acetic acid (IAA), and abscisic acid (ABA) were significantly increased in the high yielder, whereas sucrose and salicylic acid (SA) were significantly decreased compared with the low one. A total of 2984 differentially expressed proteins (DEPs) were identified in four groups, which were mainly enriched in the biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, carbohydrate metabolism, phytohormone biosynthesis, glutathione metabolism, and plant-pathogen interaction. Integrated physiological and proteomic analysis revealed that carbohydrate metabolism, terpenoid biosynthesis, resistance to stress, as well as JA and GA biosynthesis and signaling, play key roles in regulating resin yield. A series of proteins associated with resin yield, e.g., terpene synthase proteins (TPSs), ATP-binding cassette transporters (ABCs), glutathione S-transferase proteins (GSTs), and heat shock proteins (HSPs), were identified. Resin yield-related gene expression was also associated with resin yield. Our study unveils the implicated molecular mechanisms regulating resin yield and is of pivotal significance to breeding strategies of high resin-yielding masson pine cultivars.


Assuntos
Melhoramento Vegetal , Proteômica , Transportadores de Cassetes de Ligação de ATP , Perfilação da Expressão Gênica
8.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555203

RESUMO

Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.


Assuntos
Perfilação da Expressão Gênica , Prunus , Carboidratos , Flores/genética , Regulação da Expressão Gênica de Plantas , Prunus/genética , Açúcares , Transcriptoma
9.
Int J Biol Macromol ; 223(Pt A): 618-635, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356872

RESUMO

Growth-regulating factors (GRFs) are plant-specific transcription factors identified in many land plants. Recently, their indispensable roles in stress response are highlighted. In present work, 11 HpGRFs were cloned in pitaya. Segmental duplication is considered essential for the expansion of HpGRFs. A phylogenetic tree suggested that GRFs could be divided into eight categories, among which G-I was a Caryophyllales-specific one. The categorization was further evidenced by differences in the gene structure, collinearity, protein domain of HpGRFs. Five miR396 hairpins giving rise to two types of matured miR396s were identified in pitaya via sRNA-Seq in combination with bioinformatic analysis. Parallel analysis of RNA ends proved that HpGRFs except HpGRF5 were degraded by miR396-directed cleavages at the regions which code the conserved WRC motifs of HpGRFs. Multiple cis-regulatory elements were discovered in the promoters of HpGRFs. Among the elements, most are involved in stress and phytohormone response as well as plant growth, indicating a crosstalk between them. Expression analysis showed the responsive patterns of the miR396-GRF module under abiotic stresses. To conclude, our work systematically identified the miR396-targeted HpGRFs in pitaya and confirmed their involvement in stress response, providing novel insights into the comprehensive understanding of the stress resistance of pitaya.


Assuntos
Cactaceae , MicroRNAs , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , Estresse Fisiológico/genética , Cactaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232722

RESUMO

Masson pine (Pinus massoniana L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical characteristics from needles of masson pine with the high and common resin yield was investigated. The results showed that chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl C), carotenoids (Car), glucose (Glu), gibberellin A9 (GA9), gibberellin A15 (GA15), and gibberellin A53 (GA53) were significantly increased, whereas fructose (Fru), jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A19 (GA19), and gibberellin A24 (GA24) were significantly decreased in the high resin yield in comparison with those in the common one. The integrated analysis of transcriptome and proteome showed that chlorophyll synthase (chlG), hexokinase (HXK), sucrose synthase (SUS), phosphoglycerate kinase (PGK), dihydrolipoamide dehydrogenase (PDH), dihydrolipoamide succinyltransferase (DLST), 12-oxophytodienoic acid reductase (OPR), and jasmonate O-methyltransferases (JMT) were consistent at the transcriptomic, proteomic, and biochemical levels. The pathways of carbohydrate metabolism, terpenoid biosynthesis, photosynthesis, and hormone biosynthesis may play crucial roles in the regulation of resin yield, and some key genes involved in these pathways may be candidates that influence the resin yield. These results provide insights into the molecular regulatory mechanisms of resin yield and also provide candidate genes that can be applied for the molecular-assisted selection and breeding of high resin-yielding masson pine.


Assuntos
Giberelinas , Pinus , Carotenoides/metabolismo , Clorofila A/metabolismo , Ciclopentanos , Di-Hidrolipoamida Desidrogenase/metabolismo , Frutose/metabolismo , Giberelinas/metabolismo , Glucose/metabolismo , Hexoquinase/metabolismo , Hormônios/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Redes e Vias Metabólicas , Metiltransferases/metabolismo , Oxilipinas , Fosfoglicerato Quinase/metabolismo , Pinus/genética , Pinus/metabolismo , Melhoramento Vegetal , Proteoma/genética , Proteoma/metabolismo , Proteômica , Resinas Vegetais , Transcriptoma
11.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292969

RESUMO

Copper amine oxidases (CuAOs) play important roles in PA catabolism, plant growth and development, and abiotic stress response. In order to better understand how PA affects cherry fruit, four potential PavCuAO genes (PavCuAO1-PavCuAO4) that are dispersed over two chromosomes were identified in the sweet cherry genome. Based on phylogenetic analysis, they were classified into three subclasses. RNA-seq analysis showed that the PavCuAO genes were tissue-specific and mostly highly expressed in flowers and young leaves. Many cis-elements associated with phytohormones and stress responses were predicted in the 2 kb upstream region of the promoter. The PavCuAOs transcript levels were increased in response to abscisic acid (ABA) and gibberellin 3 (GA3) treatments, as well as abiotic stresses (NaCl, PEG, and cold). Quantitative fluorescence analysis and high-performance liquid chromatography confirmed that the Put content fell, and the PavCuAO4 mRNA level rose as the sweet cherry fruit ripened. After genetically transforming Arabidopsis with PavCuAO4, the Put content in transgenic plants decreased significantly, and the expression of the ABA synthesis gene NCED was also significantly increased. At the same time, excessive H2O2 was produced in PavCuAO4 transiently expressed tobacco leaves. The above results strongly proved that PavCuAO4 can decompose Put and may promote fruit ripening by increasing the content of ABA and H2O2 while suppressing total free PA levels in the fruit.


Assuntos
Amina Oxidase (contendo Cobre) , Arabidopsis , Prunus avium , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Cobre/metabolismo , Arabidopsis/genética , RNA Mensageiro/metabolismo , Poliaminas/metabolismo
12.
Front Plant Sci ; 13: 989959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061761

RESUMO

Cherries are one of the important fruit trees. The growth of cherry is greatly affected by abiotic stresses such as drought, which hinders its development. Chalcone synthase (CHS, EC 2.3.1.74) is a crucial rate-limiting enzyme in the flavonoid biosynthetic pathway that plays an important role in regulating plant growth, development, and abiotic stress tolerance. In the current study, three genes encoding chalcone synthase were identified in the genome of sweet cherry (Prunus avium L.). The three genes contained fewer introns and showed high homology with CHS genes of other Rosaceae members. All members are predicted to localize in the cytoplasm. The conserved catalytic sites may be located at the Cys163, Phe214, His302, and Asn335 residues. These genes were differentially expressed during flower bud dormancy and fruit development. The total flavonoid content of Chinese cherry (Cerasus pseudocerasus Lindl.) was highest in the leaves and slightly higher in the pulp than in the peel. No significant difference in total flavonoid content was detected between aborted kernels and normally developing kernels. Overexpression of Chinese cherry CpCHS1 in tobacco improved the germination frequency of tobacco seeds under drought stress, and the fresh weight of transgenic seedlings under drought stress was higher than that of the wild type, and the contents of SOD, POD, CAT, and Pro in OE lines were significantly increased and higher than WT under drought stress. These results indicate cherry CHS genes are conserved and functionally diverse and will assist in elucidating the functions of flavonoid synthesis pathways in cherry and other Rosaceae species under drought stress.

13.
BMC Genomics ; 23(1): 415, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655134

RESUMO

BACKGROUND: As transcription factors, the TCP genes are considered to be promising targets for crop enhancement for their responses to abiotic stresses. However, information on the systematic characterization and functional expression profiles under abiotic stress of TCPs in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is limited. RESULTS: In this study, we identified 26 FtTCPs and named them according to their position on the chromosomes. Phylogenetic tree, gene structure, duplication events, and cis-acting elements were further studied and syntenic analysis was conducted to explore the bioinformatic traits of the FtTCP gene family. Subsequently, 12 FtTCP genes were selected for expression analysis under cold, dark, heat, salt, UV, and waterlogging (WL) treatments by qRT-PCR. The spatio-temporal specificity, correlation analysis of gene expression levels and interaction network prediction revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stresses. Moreover, subcellular localization confirmed that FtTCP15 and FtTCP18 localized in the nucleus function as transcription factors. CONCLUSIONS: In this research, 26 TCP genes were identified in Tartary buckwheat, and their structures and functions have been systematically explored. Our results reveal that the FtTCP15 and FtTCP18 have special cis-elements in response to abiotic stress and conserved nature in evolution, indicating they could be promising candidates for further functional verification under multiple abiotic stresses.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563283

RESUMO

Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low-Pi) stress. To date, however, the genes involved in low-Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low-Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low-Pi stress-response. After exposure to low-Pi treatment (32 µmol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress-free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low-Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low-Pi treatment. Many enzyme-related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up-regulated to low-Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low-Pi response. In combination with the physiological characterization, several low-Pi-responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low-Pi-responsive tolerance in this line. Interestingly, low-Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low-Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low-Pi stress.


Assuntos
Malus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Fósforo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma
15.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769398

RESUMO

Auxin response factors (ARFs) play a vital role in plant growth and development. In the current study, 16 ARF members have been identified in the sweet cherry (Prunus avium L.) genome. These genes are all located in the nucleus. Sequence analysis showed that genes in the same subgroup have similar exon-intron structures. A phylogenetic tree has been divided into five groups. The promoter sequence includes six kinds of plant hormone-related elements, as well as abiotic stress response elements such as low temperature or drought. The expression patterns of PavARF in different tissues, fruitlet abscission, cold and drought treatment were comprehensively analyzed. PavARF10/13 was up-regulated and PavARF4/7/11/12/15 was down-regulated in fruitlet abscising. These genes may be involved in the regulation of fruit drop in sweet cherry fruits. This study comprehensively analyzed the bioinformatics and expression pattern of PavARF, which can lay the foundation for further understanding the PavARF family in plant growth development and fruit abscission.


Assuntos
Frutas/metabolismo , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Prunus avium/metabolismo , Elementos de Resposta , Estresse Fisiológico , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/crescimento & desenvolvimento
16.
BMC Plant Biol ; 21(1): 173, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838661

RESUMO

BACKGROUND: The shedding of premature sweet cherry (Prunus avium L) fruitlet has significantly impacted production, which in turn has a consequential effect on economic benefits. RESULT: To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollen viability and structure had been observed from the pollination trees. Subsequently, the morphological characters of the shedding fruitlet, the plant hormone titers of dropping carpopodium, the transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium were characterized in red color, and embryos of abscising fruitlet were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6462 were significantly differentially expressed, of which 2456 genes were up-regulated and 4006 down-regulated in the abscising carpopodium. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), were down-regulated, while the 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. CONCLUSION: Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.


Assuntos
Frutas/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Homeodomínio/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus avium/genética , Transcriptoma , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Prunus avium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...